Ankle syndesmotic instability assessment using a three-dimensional distance mapping algorithm: a cadaveric pilot WBCT study

Kevin Dibbern1, Grayson Talaski1, Eli Schmidt1, Ryan Jasper1, Vineel Mallavarapu1, Matthew Jones1, Hannah Stebral1, Andrew Behrens1, Kepler Alencar Mendes de Carvalho1, Ki Chun Kim1, Vineel Mallavarapu1,2, César de César Netto1

1. Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, IA, USA.
2. Department of Orthopedics and Traumatology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil.
3. Department of Orthopedic Surgery, Seoul Medical Center, Jungnang-gu, Seoul, South Korea.

Abstract

Objective: This cadaveric pilot study was to develop a weight bearing computed tomography (WBCT) three-dimensional (3D) distance mapping algorithm that would allow for detection of syndesmotic instability.

Methods: Pilot study, two cadaveric specimens. Syndesmotic instability was induced by release of all syndesmotic ligaments through a conventional lateral ankle approach. WBCT imaging under simulated weight bearing was acquired before and after syndesmotic destabilization. Syndesmotic incisura and ankle gutter distances were assessed using a 3D distance mapping WBCT algorithm.

Results: We found increases in the overall mean syndesmotic distances in the injured syndesmosis when compared to pre-injury state, and color-coded distance maps allowed easy interpretation of the syndesmotic widening following ligament sectioning and destabilization of the syndesmotic joint.

Conclusion: The WBCT 3D distance mapping algorithm has the potential to allow detection of mild syndesmotic instability with a relatively ease of interpretation by using color-coded distance maps.

Level of Evidence V; Cadaveric Study.

Keywords: Joint instability; Orthopedic procedures; Syndesmosis; Tomography, x-ray computed; Weight-bearing.

Introduction

The importance of the distal tibiofibular syndesmotic ligaments in maintaining the overall stability of the ankle joint has been frequently emphasized in the literature. Ramsey and Hamilton(1), in their classic study, demonstrated that a minimal lateral displacement of one millimeter of the talus within the ankle mortise would lead to a decrease of 42% of the ankle contact area. This decrease in total contact area could cause an increase in the articular pressures and subsequent joint degradation. Because of that, diagnosing syndesmotic instability is paramount.
Weight bearing computed tomography (WBCT) has emerged as a promising diagnostic tool that can assess the ankle joint under physiological weight-bearing load, potentially allowing detection of these small deviations of an unstable syndesmosis\(^2\). This weight load in isolation has been shown to not induce enough stress to reliably demonstrate syndesmotic instability\(^6\), with a better diagnostic accuracy being observed when an external rotational torque is applied in combination\(^8\). This imaging modality also allows three-dimensional (3D) segmentation of the ankle bones and highly accurate assessments of the syndesmotic area and of volumetric measurements\(^10\), as well as 3D distance mapping of the entire relationship between the talus, fibula, and tibia\(^14\).

With that in mind, the overall objective of this cadaveric pilot study was to develop a WBCT 3D distance mapping algorithm that would allow for detection of mild syndesmotic instability in the absence of external rotation torque. The aim of this cadaveric pilot study is to describe the 3D WBCT Distance Mapping methodology utilized to detect syndesmotic instability.

Methods

In this cadaveric experimental pilot study, a total of two through-knee specimens were utilized. No prior surgical procedures or fractures were found, by means of fluoroscopic assessment. University Ethics Committee approved this research under the number 202006176 in accordance with the Declaration of Helsinki.

Specimen preparation and external frame

The proximal aspect of the through-knee specimens was prepared by detaching the surrounding soft tissue, with care to avoid destabilizing the proximal tibiofibular joint. The proximal tibia was then potted in a square block using polymethylmethacrylate bone cement. The cemented block was utilized to fix the specimen vertically and in a plantigrade fashion into an external radiolucent frame that was previously utilized in the literature to allow for simulated weight bearing\(^17\). Weight bearing was simulated by introducing 36.3 kilograms (356N) of vertical load into the specimen frame construct (Figure 1).

Simulated weight-bearing CT imaging

The radiolucent frame with the specimen under simulated weight-bearing was placed in a WBCT scan machine (HiRise, Curvebeam\(^\text{TM}\)), and images of the foot and ankle were acquired under a metal artifact reduction algorithm. Each specimen underwent a total of three WBCT images with simulated weight bearing in the external frame. The initial imaging was acquired as a baseline normal scan with intact syndesmotic ligaments performed after the specimen was thawed. The second set of WBCT images was acquired after the syndesmotic ligaments were surgically sectioned.

Surgical procedures

Surgical procedures were all performed by a single fellowship-trained orthopedic foot and ankle surgeon with more than ten years of experience. All syndesmotic ligaments were released. The surgical sectioning of the syndesmotic ligaments was performed through a direct lateral approach to the distal fibula. The anteroinferior tibiofibular ligament (AITFL) and the interosseous ligaments were sectioned under direct visualization of the anterior aspect of the syndesmosis. The posteroinferior tibiofibular ligament (PITFL) was sectioned under direct visualization posteriorly, by retracting the peroneal tendons and giving access to the posterior aspect of the syndesmosis. The superior peroneal retinaculum and deltoid ligament complex were kept intact.

3D distance mapping

Creation of distance maps began with a semi-automated segmentation of the tibia, talus, and fibula using a commercially available software package (Bonelogic, Disior\(^\text{TM}\)). Models were verified and finalized by an expert with more than 9 years of image segmentation experience to remove any imperfections. Thousands of distance measurements were then automatically made based on a previously published protocol\(^18\) (Figure 2) and were performed along the entire tibiofibular interface and additionally included the gutters of the ankle joint.
Measurements performed in articular areas were defined as the distance along the normal direction of vectors projected from the tibial subchondral surface to the opposing surfaces of the talus or distal fibula, as previously described\(^{(19,20)}\). Distances in the syndesmosis were defined along the averaged normal direction between the fibula and tibia.

Color-Coded maps were then created to facilitate the interpretation of distance maps results. For each one of the WBCT scans (before and after syndesmotic ligament sectioning), the distances between the tibia and fibula were color-coded with small distances (0-5 mm) ranging from dark to light blue, and larger distances (6-10 mm) ranging from green to dark yellow and then light yellow. The comparative assessment between pre-injury to post-syndesmotic ligament sectioning utilized then a different set of color-coded maps (post-injury minus pre-injury state). When the post-injury unstable state demonstrated relative widening of the syndesmotic space when compared to the pre-injury state, red color was utilized to depict widening. White colored maps demonstrated similar syndesmotic distances before and after syndesmotic destabilization, and blue color depicted decreased and closer relative distances between the tibia and the fibula when comparing post and pre syndesmotic injury.

Volumetric and area analyses

Automated volumetric and area measurements of the distal tibiofibular syndesmosis at 1cm, 3cm, and 5cm from the tibiotalar joint (apex of the distal tibia articular dome) were performed (Figure 3).
in the comparative color-coded distance maps, particularly in the anterior aspect of the tibiofibular syndesmosis and lateral ankle gutter.

Discussion

This cadaveric pilot study aimed to assess the capability of a WBCT 3D distance mapping algorithm in identifying syndesmotic injury and instability. The 3D WBCT distance mapping algorithm demonstrated promising diagnostic capability even in the absence of external rotation torque applied in the cadaveric specimen, shining light in the possibility of development of a non-invasive diagnostic tool to detect mild syndesmotic instability. To the author’s knowledge, this was the first pilot study to utilize 3D distance mapping in the assessment of syndesmotic Instability.

The use of 3D WBCT distance mapping is an emerging technique with the intrinsic potential of assessing bone interaction in a wide range of orthopedic conditions. Dibbern et al. used the technology to exhibit differences in peritalar subluxation in patients with progressive collapsing foot deformity and controls (decreased middle facet coverage: 46.6%, p<0.001, increase sinus tarsi coverage: 98.0%, p<0.001). When evaluating cavovarus deformities, Lintz et al. used WBCT distance mapping to objectively represent several positional changes in the diseased population, such as the ankle, subtalar, midtarsal, and tarsometatarsal joints. Fibular malpositioning in subtle syndesmotic instability can be in the range of the tenth of the millimeters, making it impossible for conventional, manual, and isolated measurements to make accurate diagnosis. Given this, and considering all the challenges of a reliable clinical diagnosis, this new technology can hopefully provide ground-breaking and accurate assessment of these extremely challenging and unforgiving injury. Additional full study with larger number of cadaveric specimens as well as clinical applicability of this 3D WBCT distance mapping algorithm will follow.

Conclusion

In this cadaveric pilot study, we described a novel 3D WBCT distance mapping protocol to detect the relative positioning of the distal fibula and tibia, aiming to develop an accurate diagnostic tool to detect subtle syndesmotic instability, in the absence of external ration torque application. The color-coded 3D distance maps acquired allowed for a relatively simple interpretation of syndesmotic distances, particularly in the comparative pre- and post-injury analysis, that could allow for detection of subtle syndesmotic instability by means of visual interpretation of the distance maps. This technology could be applied to a comparison between injured versus contralateral control side in a clinical scenario of potential subtle syndesmotic instability. Additional large scale cadaveric and clinical studies are needed to establish the role of WBCT 3D distance mapping in the diagnosis and management of ankle syndesmotic instability.

References

7. Burssens A, Krahenbuhl N, Weinberg MM, Lenz AL, Saltzman CL,

